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Abstract

The axisymmetric vibration of spinning isotropic annular plates is herein analyzed by a modi®ed axisymmetric
®nite element. Due to the three-dimensional-elasticity nature of the present approach, all the initial stresses induced

by the centrifugal force are calculated and taken into account in the augmented strain energy expression, while only
two are considered in the conventional analyses. Also, the whole three velocity components are considered in the
inertial term instead of only one by conventional approaches. Natural frequencies of annular plates with di�erent

ratios of inner-to-outer radius, ratios of thickness-to-radius, rotational speeds, and boundary conditions are derived
by the present approach and are compared with those by a plate-theory approach. 7 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

The vibration of rotating annular disks has been studied by a number of investigators, for e.g.,

Barasch and Chen (1972), Eversman and Dodson (1969), Kirkhope and Wilson (1976), Lee and Ng

(1995), Nigh and Olson (1981), Rajguru and Sundararajan (1982), Sinha (1987) and Wilson and

Kirkhope (1976). More information can also be found in Leissa (1977, 1981, 1987). All of these

researches are based on plate theories, either classical plate theory or the Mindlin plate theory, and the

rotating e�ect is taken into account through only the in-plane stresses sr and sy induced by the rotation

of the annular plate. Also, only the inertial term of transverse motion of plates is considered. Because of

the two-dimensional-elasticity nature of plate theories, the behaviors through the thickness of the plates
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are not easy to reveal and some boundary conditions are just impossible to specify or to impose. To
circumvent the disadvantages of the plate theories, Liu and Chen (1995) employed an axisymmetric
®nite element to analyze the axisymmetric vibration of circular and annular plates, wherein the accuracy
and validation of the approach are justi®ed and some results not otherwise available in the literature are
shown.

In the present study, the approach by Liu and Chen (1995) is extended to include the rotational
e�ects. Due to the three-dimensional-elasticity nature of the method, all rotation-induced stresses are
calculated ®rst and are considered later in the vibration analyses (compared to only two stresses, sr and
sy, in the conventional analyses) and all velocity components in the r, y, z directions are included in the
kinetic energy term, instead of only the conventional @w=@ t in the transverse direction. Vibrations of
rotating annular plates with di�erent ratios of inner-to-outer radius, ratios of thickness-to-radius,
rotating speeds and boundary conditions are analyzed, and the results are compared to those obtained
by a plate-theory-based approach.

2. Formulation

To analyze the axisymmetric vibration of rotating annular plates, a modi®ed axisymmetric ®nite
element is employed with the displacement ®eld as

u � u�r, z, t�

v � v�r, z, t�

w � w�r, z, t� �1�
which is di�erent from the conventional axisymmetric ®nite element in the appearing of v, the
displacement in the circumferential direction. From this, the axisymmetric circumferentially vibrating
modes can be obtained and will be shown later to be uncoupled from the motion of u and w.
Displacements u and w are in the radial and the axial directions with r and z denoting the coordinates in
those respective directions. t is the time variable. Since we are concerned with the axisymmetric
vibration, all the three displacements are independent of the circumferential coordinate y:

Strains can be derived from the displacements as follows:
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@r
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@z
ey � u
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@v

@r
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�2�

and the stress±strain relations are those for isotropic material,8>>>>>><>>>>>>:
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with

C11 � C22 � C33 � E�1ÿ n�
�1� n��1ÿ 2n�

C12 � C13 � C23 � En
�1� n��1ÿ 2n�

C44 � C55 � C66 � G

where E is Young's modulus, n is Poisson's ratio and G is the shear modulus. The strain energy is

U � 1

2

�
v
�srer � szez � syey � tzygzy � trygry � trzgrz � dv �4�

and the kinetic energy of the plate is written as

T � 1

2

�
v

r
h
� _uÿ Ov�2���r� u�O� _v�2� _w2

i
dv �5�

where all the velocity components are measured with respect to an inertial frame, see Sreenivasamurthy
and Ramamurti (1981), and O (rad/s) is the angular velocity of the plates. In conventional analyses,
only the third term in the bracket is considered.

Following the general procedure of the ®nite element method, we express the displacements as

u �
Xn
i�1

ui�t�Ni�r, z�

v �
Xn
i�1

vi�t�Ni�r, z�

w �
Xn
i�1

wi�t�Ni�r, z� �6�

Where ui, vi, wi are nodal values and Ni are shape functions, and n denotes the number of nodes in an
element. We then substitute Eq. (6) into Eqs. (2)±(5) to express the strain energy and kinetic energy in
terms of the nodal displacements and shape functions. After that, Hamilton's principle is applied to an
element

d
��

t

�TÿU� dt

�
� 0 �7�

and we end up with the following matrix equation
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In Eq. (8), ��m pq
ij ��, ��c pq

ij ��, ��k pq
ij ��, for i, j � 10n, are the elemental mass, gyroscopic and sti�ness

matrices, respectively. fuj g, fvj g, fwj g, j � 10n, are vectors of nodal displacements and ff r
i g, ff y

i g, ff z
i g,

i � 1, . . . ,n, are forcing vectors. For details of these matrices and vectors, see Appendix A. However, it
is noteworthy that, from the expression of ff r

i g, we may ®nd that it is the centrifugal force of the
rotating disk and our formulation automatically makes this term appear.

Eq. (8) for all the elements can be assembled to obtain the system equation for the annular plate.
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�
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� �K�fUg � fFg �9�

Now we can turn to the ®rst step of our approach: to calculate the internal stresses due to rotation by
solving the simultaneous equations (10) below, which is obtained from Eq. (9) by dropping the time-
dependent terms.

�K�fUg � fFg �10�
After the rotation-induced stresses fs�g are calculated from the solution of Eq. (10), integration of their
multiplication with the nonlinear strains represents the part of contribution these stresses can make to
the strain energy to a�ect the vibration of rotating annular plates.
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�
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where fs�gT��s�r s�z s�y t�rz� and the nonlinear strains are
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It should be noted that t�zy and t�ry are zero due to symmetry and the corresponding nonlinear strains are
not shown in Eq. (12). The modi®ed Hamiton's Principle then states:

d
�
t

�TÿUÿ V� dt � 0

and we derive the modi®ed elemental equation with the sti�ness matrix being augmented as
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and the remaining terms in Eq. (8) remain the same. The additional matrix ��g pq�� comes from Eq. (11)
and are usually called the geometric sti�ness matrix in the literature. Its detailed formulae can be found
also in Appendix A.

Now we have the system equation in the following form.

�M�
�

�U
	
� �C�

�
_U
	
� ��K� � �G��fUg � fFg �14�

To investigate the free vibration of spinning annular plates, synchronous harmonic motion is assumed
and the gyroscopic matrix and the forcing term are neglected as is usually done (Leissa and Co, 1984),
and we obtain the system eigenvalue equation as follows

��K� � �G��fUg � o2�M�fUg �15�
with o2 as the eigenvalue and o is the natural frequency of axisymmetric vibration of the rotating
annular plate. Also, a careful examination of the entries in the matrices of Eq. (15) shows that the
motions in the radial and the thickness directions are uncoupled from those in the circumferential
direction, and can be solved separately.

3. Results and discussions

To show the validation and accuracy of the present approach, some example problems with di�erent
ratios of inner-to-outer radius, ratios of radius-to-thickness, rotational speeds and boundary conditions
are analyzed to calculate their natural frequencies. The material of the plate is steel with E = 210 GPa,
n � 0:3 and r � 7810 kg/m3. The geometry of the annular plate is of a=h � 5, 10, 20, 50 and b=a � 0:1,
0.25, 0.5 where h is the plate thickness and is assumed to be a constant throughout the investigation; a
is the outer radius and b is the inner radius of the annular plate.

Three types of boundary conditions are employed in the present study: clamped-free (C-F), simply
supported 1-free (SS1-F), and simply supported 3-free (SS3-F), see Fig. 1. These represent the most
typical and practical boundary conditions of rotating disk in real situations. The two di�erent simply
supported boundary conditions have been studied by Liu and Chen (1995) and the abbreviations, SS1
and SS3, are thus followed. It is noted that SS3 is a condition that cannot be imposed with plate-theory-
based approaches.

All the analyses are accomplished with a eight-node, two-dimensional quadratic isoparametric
quadrilateral axisymmetric element, see Reddy (1993). Typical trends of convergence and meshes used in
the present study are shown in Table 1. The numbers in the parentheses represent the numbers of grids
of the ®nite element meshes in the radial and the thickness directions, respectively. Both are equally
spaced. The ®nest mesh of each case in Table 1 is then employed to obtain frequencies in Tables 2 and
3. The rotational speed of the plate O and the natural frequency o are nondimensionalized according to
�O � Oa2�rh=8D�1=2 and �o � oa2�rh=D�1=2, which are just the same as those in Sinha (1987) using a
plate-theory-based approach with Mindlin's transverse shear deformation and rotary inertia terms
considered.

Table 2 shows the nondimensional natural frequencies �o1's of the ®rst axisymmetric transverse
vibration mode of rotating annular plates under di�erent combinations of a/h, b/a, boundary conditions
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and �O: The `�' symbol after a nondimensional frequency mean that there exists a circumferentially
vibrating mode (in-plane torsional mode) before the present one. The shape of one such mode is shown
in Fig. 2. From Table 2, the following conclusions may be drawn.

1. It is seen that �o1's get smaller with decreasing a/h for all the nonrotational cases with both the
present method and Sinha's. As �O gets larger, the increase of �o1 with decreasing a/h is more obvious
for the present method than for Sinha for all the cases compared. With plate theories, centrifugal
force due to rotation can cause only extension in the radial and the circumferential directions no
matter what a/h is, when the initial sti�ening is concerned. However, some other e�ect, such as
Poisson's e�ect in r±z plane in the present 3D analysis, may make the rotating plate sti�er when the
thickness is larger. In other words, the thickness e�ect for plate rotation is more signi®cant in 3D
analysis than in plate-theory analysis of plate vibrations. This might also be the reason that �o1's of
Sinha's for smaller a/h are still smaller than for large a/h even when �O is eight and above and, the

Fig. 1. Boundary conditions.

Fig. 2. An axisymmetric circumferentially vibrating mode (in-plane torsional mode), �o � 6:568, for C-F boundary condition,

b=a � 0:1, a=h � 10, and �O � 4 �u � w � 0:0).
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boundary condition is of the clamped-free type.
2. Compared to the clamped-free cases, �o1's for the simply-supported boundary condition by Sinha are

quite close to each other for various values of a/h, especially when �O � 0: This could be attributed to
the zero rotational boundary constraint that reduces the e�ect of thickness variation. Thus, �o1 by
Sinha for small a/h easily goes beyond that for larger a/h with increasing �O, even though the
thickness e�ect of the rotating plate in Sinha's analysis is not as high as in the 3D analysis.

3. For thin plates �a=h � 50), results of the present approach and those of Sinha's are very close when
boundary conditions are C-F and SS1-F with arbitrary b/a and �O: In these thin plate cases, Sinha
switches his shear deformation theory to classical plate theory. Therefore, it is justi®ed again that
classical plate theory is a good alternative in analyzing the behaviors of thin plates in some cases,
e.g., when the boundary conditions are the conventional C-F and SS1-F types.

4. In all cases, �o1's increase as �O increases. However, when �O is getting larger, the results for the C-F
boundary condition and the SS1-F boundary condition become close to each other. For example,
ratio of �o1's between C-F and SS1-F is 13.03/4.12 for b=a � 0:5, a=h � 50 at �O � 0 and is 67.03/63.57
at �O � 16: Therefore, we may say that the centrifugal e�ect dominates the vibration of the rotating
disk at higher �O and makes the di�erence between the C-F and the SS1-F boundary conditions

Table 1

Typical convergence of �o1 with meshes used in the present study � �O � 4)

Mode 1

b=a � 0:1 b=a � 0:25 b=a � 0:5

Boundary conditions a/h 5 10 5 10 5 10

C-F (10� 2) 9.637� (10� 2) 9.771� (10� 2) 12.74� (10� 2) 12.81 (10� 2) 20.29 (10� 2) 20.98

(20� 2) 9.623� (20� 2) 9.748� (20� 2) 12.73� (20� 2) 12.79 (10� 4) 20.26 (20� 2) 20.95

(20� 4) 9.611� (20� 4) 9.738� (20� 4) 12.71� (20� 4) 12.78 (20� 4) 20.25 (20� 4) 20.93

SS1-F (10� 2) 8.389� (10� 2) 8.561� (10� 2) 10.78� (10� 2) 10.82 (10� 2) 15.76 (10� 2) 16.02

(20� 2) 8.310� (20� 2) 8.516� (20� 2) 10.71� (20� 2) 10.76 (10� 4) 15.64 (20� 2) 15.97

(20� 4) 8.277� (20� 4) 8.476� (20� 4) 10.59� (20� 4) 10.69 (20� 4) 15.56 (20� 4) 15.87

SS3-F (10� 2) 7.779� (10� 2) 8.806� (10� 2) 9.891� (10� 2) 10.30 (10� 2) 13.11 (10� 2) 13.33

(20� 2) 7.594� (20� 2) 8.729� (20� 2) 9.779� (20� 2) 10.24 (10� 4) 13.02 (20� 2) 13.29

(20� 4) 7.434� (20� 4) 8.664� (20� 4) 9.656� (20� 4) 10.18 (20� 4) 12.95 (20� 4) 13.22

Mode 1

b=a � 0:1 b=a � 0:25 b=a � 0:5

Boundary conditions a/h 20 50 20 50 20 50

C-F (15� 1) 9.874 (30� 1) 9.873 (15� 1) 12.88 (25� 1) 12.88 (20� 1) 21.24 (20� 1) 21.31

(15� 2) 9.847 (60� 1) 9.858 (15� 2) 12.86 (50� 1) 12.86 (20� 2) 21.20 (40� 1) 21.27

(30� 2) 9.830 (30� 2) 12.84 (50� 2) 12.85 (40� 2) 21.26

SS1-F (15� 1) 8.764 (30� 1) 8.777 (15� 1) 11.11 (25� 1) 11.13 (20� 1) 16.38 (20� 1) 16.45

(15� 2) 8.654 (60� 1) 8.765 (15� 2) 10.95 (50� 1) 11.12 (20� 2) 16.22 (40� 1) 16.43

(30� 2) 8.624 (30� 2) 10.92 (50� 2) 11.05 (40� 2) 16.37

SS3-F (15� 1) 9.009� (30� 1) 9.043 (15� 1) 10.41 (25� 1) 10.44 (20� 1) 13.47 (20� 1) 13.53

(15� 2) 8.965� (60� 1) 9.023 (15� 2) 10.37 (50� 1) 10.42 (20� 2) 13.41 (40� 1) 13.51

(30� 2) 8.921� (30� 2) 10.32 (50� 2) 10.39 (40� 2) 13.49

C.-F. Liu et al. / International Journal of Solids and Structures 37 (2000) 5813±5827 5819



T
a
b
le

2

N
o
n
d
im

en
si
o
n
a
li
ze
d
fr
eq
u
en
ci
es

o
f
th
e
®
rs
t
a
x
is
y
m
m
et
ri
c
tr
a
n
sv
er
se

v
ib
ra
ti
o
n
m
o
d
e,

� o
0 1
s,
o
f
ro
ta
ti
n
g
a
n
n
u
la
r
p
la
te
s

b
=a
�

0
:1

b
=a
�

0
:2
5

b
=a
�

0
:5

a
/h

a
/h

a
/h

� O
B
o
u
n
d
a
ry

co
n
d
it
io
n
s

5
1
0

2
0

5
0

5
1
0

2
0

5
0

5
1
0

2
0

5
0

C
-F

3
.9
5
0
�

4
.1
6
7

4
.2
2
5

4
.2
4
1

5
.4
5
5

5
.7
4
7

5
.8
2
5

5
.8
4
2

1
1
.6
1

1
2
.6
5

1
2
.9
7

1
3
.0
3

P
re
se
n
t

5
.5
6

5
.7
6

5
.8
3

1
1
.9
7

1
2
.7
1

1
3
.0
2

S
in
h
a
(1
9
8
7
)

0
S
S
1
-F

3
.2
0
8
�

3
.3
9
2

3
.4
3
6

3
.4
4
8

3
.2
3
2

3
.3
2
9

3
.3
5
2

3
.3
5
9

3
.9
8
5

4
.0
8
8

4
.1
1
3

4
.1
2
0

P
re
se
n
t

3
.3
3

3
.3
5

3
.3
7

4
.0
9

4
.1
5

4
.1
6

S
in
h
a
(1
9
8
7
)

S
S
3
-F

3
.5
0
5
�

3
.7
8
8
�

3
.8
9
9

3
.9
6
9

4
.1
3
5
�

4
.4
3
1

4
.6
1
6

4
.7
1
2

6
.2
1
1

6
.7
2
0

7
.0
4
5

7
.1
6
7

P
re
se
n
t

C
-F

5
.9
0
6
�

6
.1
6
3
�

6
.2
4
1

6
.2
6
2

7
.8
6
5

8
.1
4
0

8
.2
2
1

8
.2
3
8

1
4
.2
2

1
5
.1
6

1
5
.4
6

1
5
.5
2

P
re
se
n
t

7
.8
7

8
.1
1

8
.2
1

1
4
.4
7

1
5
.1
7

1
5
.5
1

S
in
h
a
(1
9
8
7
)

2
S
S
1
-F

4
.9
6
3
�

5
.2
3
1

5
.3
2
3

5
.3
8
1

5
.8
3
3

6
.0
4
8

6
.1
7
9

6
.2
4
6

8
.3
0
1

8
.6
5
5

8
.8
5
6

8
.9
3
2

P
re
se
n
t

6
.3
2

6
.2
9

6
.3
0

9
.1
3

9
.0
2

8
.9
9

S
in
h
a
(1
9
8
7
)

S
S
3
-F

5
.0
3
1
�

5
.5
9
3
�

5
.7
3
7

5
.8
1
8

6
.0
8
8
�

6
.4
7
7

6
.6
0
8

6
.6
9
2

8
.3
0
4

8
.8
0
1

9
.0
7
6

9
.1
8
1

P
re
se
n
t

C
-F

9
.6
1
1
�

9
.7
3
8
�

9
.8
3
0

9
.8
5
8

1
2
.7
1
�

1
2
.7
8

1
2
.8
4

1
2
.8
5

2
0
.2
5

2
0
.9
3

2
1
.2
0

2
1
.2
6

P
re
se
n
t

1
2
.3
3

1
2
.6
5

1
2
.8
1

2
0
.2
1

2
0
.8
3

2
1
.2
3

S
in
h
a
(1
9
8
7
)

4
S
S
1
-F

8
.2
7
7
�

8
.4
7
6
�

8
.6
2
4

8
.7
6
5

1
0
.5
9
�

1
0
.6
9

1
0
.9
2

1
1
.0
5

1
5
.5
6

1
5
.8
7

1
6
.2
2

1
6
.3
7

P
re
se
n
t

1
1
.2
4

1
1
.1
6

1
1
.1
4

1
6
.8
1

1
6
.5
5

1
6
.4
7

S
in
h
a
(1
9
8
7
)

S
S
3
-F

7
.4
3
4
�

8
.6
6
4
�

8
.9
2
1
�

9
.0
2
3

9
.6
5
6
�

1
0
.1
8

1
0
.3
2

1
0
.3
9

1
2
.9
5

1
3
.2
2

1
3
.4
1

1
3
.4
9

P
re
se
n
t

C
-F

1
7
.8
7
�

1
7
.5
6
�

1
7
.5
2

2
3
.6
5
�

2
3
.2
2

2
3
.1
4

3
5
.7
7

3
5
.7
4

3
5
.7
4

P
re
se
n
t

2
2
.4
6

2
2
.7
9

2
3
.0
7

3
4
.7
9

3
5
.1
0

3
5
.7
0

S
in
h
a
(1
9
8
7
)

8
S
S
1
-F

1
6
.0
3
�

1
5
.9
0
�

1
6
.1
5

2
1
.3
2
�

2
1
.1
9

2
1
.3
2

3
1
.6
8

3
1
.7
6

3
1
.9
3

P
re
se
n
t

2
1
.7
0

2
1
.5
3

2
1
.4
9

3
2
.9
1

3
2
.2
9

3
2
.1
1

S
in
h
a
(1
9
8
7
)

S
S
3
-F

1
5
.1
1
�

1
5
.5
9
�

1
5
.6
7

1
8
.6
9
�

1
8
.4
9

1
8
.4
3

2
4
.4
0

2
3
.8
4

2
3
.7
5

P
re
se
n
t

C
-F

2
7
.6
7
�

2
5
.6
6
�

2
5
.3
0

3
6
.4
1
�

3
4
.1
7

3
3
.7
0

5
2
.6
9

5
1
.4
8

5
1
.2
4

P
re
se
n
t

3
3
.0
1

3
3
.2
7

3
3
.6
4

5
0
.6
1

5
0
.4
5

5
1
.1
9

S
in
h
a
(1
9
8
7
)

1
2

S
S
1
-F

2
5
.3
2
�

2
3
.7
0
�

2
3
.7
9

3
4
.0
3
�

3
1
.9
9

3
1
.8
1

4
9
.4
1

4
7
.7
8

4
7
.6
9

P
re
se
n
t

3
2
.3
3

3
2
.0
8

3
2
.0
0

4
9
.2
1

4
8
.2
1

4
7
.9
1

S
in
h
a
(1
9
8
7
)

S
S
3
-F

2
2
.3
5
�

2
2
.4
4
�

2
2
.3
3

2
9
.0
0
�

2
7
.0
9

2
6
.6
4

3
9
.7
9

3
5
.1
6

3
4
.5
1

P
re
se
n
t

C
-F

4
0
.9
6
�

3
4
.2
8
�

3
3
.1
6
�

5
2
.5
9
�

4
5
.7
1
�

4
4
.3
9

7
1
.8
5
�

6
7
.8
4

6
7
.0
3

P
re
se
n
t

4
3
.7
0

4
3
.8
9

4
4
.3
4

6
6
.8
2

6
6
.1
6

6
6
.9
8

S
in
h
a
(1
9
8
7
)

1
6

S
S
1
-F

3
8
.1
6
�

3
2
.0
8
�

3
1
.5
9
�

5
0
.9
8
�

4
3
.4
2
�

4
2
.4
4

6
4
.3
2

6
3
.5
7

P
re
se
n
t

4
2
.9
9

4
2
.6
7

4
2
.5
7

6
5
.5
7

6
4
.1
7

6
3
.7
6

S
in
h
a
(1
9
8
7
)

S
S
3
-F

3
1
.1
5

2
9
.6
4
�

2
9
.0
3
�

4
3
.4
3

3
6
.3
2
�

3
4
.9
6

4
7
.4
6

4
5
.4
8

P
re
se
n
t

C.-F. Liu et al. / International Journal of Solids and Structures 37 (2000) 5813±58275820



T
a
b
le

3

N
o
n
d
im

en
si
o
n
a
li
ze
d
fr
eq
u
en
ci
es

o
f
th
e
se
co
n
d
a
x
is
y
m
m
et
ri
c
tr
a
n
sv
er
se

v
ib
ra
ti
o
n
m
o
d
e,

� o
0 2
s,
o
f
ro
ta
ti
n
g
a
n
n
u
la
r
p
la
te
s

b
=a
�

0
:1

b
=a
�

0
:2
5

b
=a
�

0
:5

a
/h

a
/h

a
/h

� O
B
o
u
n
d
a
ry

co
n
d
it
io
n
s

5
1
0

2
0

5
0

5
1
0

2
0

5
0

5
1
0

2
0

5
0

C
-F

1
9
.3
4

2
3
.3
0
�

2
4
.7
7
�

2
5
.2
3

2
6
.9
8
�

3
3
.4
9
�

3
6
.0
4
�

3
6
.8
7

5
0
.3
3
�

7
0
.4
1
�

8
0
.7
7
�

8
4
.5
6

P
re
se
n
t

2
6
.0
3

3
4
.3
2

3
8
.3
1

4
6
.6
5

7
0
.4
5

8
3
.3
5

S
in
h
a
(1
9
8
7
)

0
S
S
1
-F

1
6
.6
7

1
9
.6
8
�

2
0
.5
8
�

2
0
.8
4

2
2
.4
4
�

2
6
.2
5
�

2
7
.4
0

2
7
.7
4

4
1
.9
6
#

5
4
.7
4
�

5
9
.3
4

6
0
.7
6

P
re
se
n
t

2
3
.3
0

2
7
.8
6

2
9
.7
9

4
4
.8
8

5
6
.1
0

6
1
.8
7

S
in
h
a
(1
9
8
7
)

S
S
3
-F

1
6
.0
5

2
1
.2
2

2
2
.7
6
�

2
3
.3
7

2
1
.2
6
�

2
8
.4
0
�

3
0
.5
0
�

3
1
.2
7

3
8
.7
6
#

5
0
.6
0
�

6
1
.3
2

6
4
.2
2

P
re
se
n
t

C
-F

2
3
.2
1

2
6
.7
4

2
8
.1
1
�

2
8
.5
4

3
0
.9
8
�

3
6
.9
3
�

3
9
.3
2
�

4
0
.1
1

5
4
.1
8
�

7
3
.4
4
�

8
3
.5
1
�

8
7
.2
2

P
re
se
n
t

2
8
.7
2

3
7
.8
9

4
2
.5
1

4
7
.8
4

7
2
.4
7

8
8
.5
5

S
in
h
a
(1
9
8
7
)

2
S
S
1
-F

2
0
.6
2

2
3
.3
6

2
4
.2
5
�

2
4
.5
8

2
6
.7
4
�

3
0
.2
7
�

3
1
.4
9
�

3
1
.9
4

4
7
.0
6
#

5
8
.6
1
�

6
3
.1
0

6
4
.5
5

P
re
se
n
t

2
7
.4
2

3
1
.6
0

3
3
.4
1

5
1
.0
9

6
0
.1
6

6
4
.3
7

S
in
h
a
(1
9
8
7
)

S
S
3
-F

1
9
.4
4

2
4
.4
7

2
5
.9
8
�

2
6
.5
4
�

2
4
.3
8

3
1
.2
7
�

3
3
.3
4
�

3
4
.0
7

4
0
.8
9
#

5
2
.3
2
�

6
3
.1
8

6
6
.1
0

P
re
se
n
t

C
-F

3
2
.7
9

3
5
.2
3

3
6
.3
5
�

3
6
.7
2
�

4
1
.1
3
+

4
5
.8
0
�

4
7
.8
4
�

4
8
.5
2

6
4
.3
8
#

8
1
.9
0
�

9
1
.2
4
�

9
4
.7
2

P
re
se
n
t

3
6
.3
8

4
6
.8
7

5
2
.3
5

5
3
.8
4

7
9
.2
3

9
6
.8
6

S
in
h
a
(1
9
8
7
)

4
S
S
1
-F

3
0
.1
6

3
2
.1
3

3
2
.9
4
�

3
3
.3
8
�

3
7
.2
2
+

4
0
.0
3
�

4
1
.3
1
�

4
1
.9
7

5
8
.8
2
#

6
8
.8
4
�

7
3
.1
4

7
4
.6
8

P
re
se
n
t

3
6
.5
1

4
1
.4
5

4
3
.6
0

6
0
.5
9

6
9
.9
2

7
4
.1
9

S
in
h
a
(1
9
8
7
)

S
S
3
-F

2
7
.8
7

3
2
.4
1

3
3
.8
9

3
4
.3
7
�

3
5
.5
7
+

3
8
.7
3
�

4
0
.7
3
�

4
1
.3
9

4
7
.7
2
#

5
7
.0
4
�

6
8
.4
6
�

7
1
.4
3

P
re
se
n
t

C
-F

5
9
.1
9

5
8
.8
2

5
8
.8
6
�

7
2
.0
6

7
2
.5
3
�

7
2
.8
0

1
0
9
.7
�

1
1
7
.1
�

1
1
9
.8

P
re
se
n
t

5
7
.8
6

7
2
.3
7

8
0
.0
6

7
5
.1
7

1
0
3
.1
7

1
2
3
.6
4

S
in
h
a
(1
9
8
7
)

8
S
S
1
-F

5
6
.1
1

5
5
.6
9

5
6
.0
8
�

6
7
.2
0

6
7
.4
5
�

6
7
.9
1

9
9
.9
6
�

1
0
3
.5
�

1
0
4
.9

P
re
se
n
t

5
9
.8
9

6
7
.4
4

7
0
.7
1

8
8
.1
9

9
9
.1
6

1
0
4
.4
4

S
in
h
a
(1
9
8
7
)

S
S
3
-F

5
4
.4
1

5
5
.2
2

5
5
.4
0
�

6
0
.6
2

6
2
.3
0
�

6
2
.5
5

9
4
.2
7
#

8
6
.7
0
�

8
9
.6
7

P
re
se
n
t

C
-F

8
9
.8
3
+

8
4
.4
1

8
3
.4
1
�

1
0
5
.7
+

1
0
1
.5
�

1
0
0
.8
�

1
4
6
.4
#

1
5
0
.6
�

1
5
2
.6

P
re
se
n
t

8
1
.9
2

1
0
1
.4
9

1
1
1
.8
4

1
0
1
.0
1

1
3
4
.0
5

1
5
8
.2
3

S
in
h
a
(1
9
8
7
)

1
2

S
S
1
-F

8
6
.5
2
+

8
1
.2
3

8
0
.8
0
�

1
0
1
.6
+

9
6
.9
1
�

9
6
.5
1
�

1
4
0
.0
#

1
3
9
.7
�

1
4
0
.7

P
re
se
n
t

8
5
.3
4

9
5
.9
2

1
0
0
.4
9

1
2
1
.9
0

1
3
3
.7
3

1
4
0
.2
7

S
in
h
a
(1
9
8
7
)

S
S
3
-F

8
2
.6
4
+

7
9
.3
2

7
8
.6
0
�

9
4
.4
7
+

8
7
.8
0
�

8
7
.0
3
�

1
2
5
.7
#

1
1
1
.3
�

1
1
3
.9

P
re
se
n
t

C
-F

1
3
1
.3
+

1
1
2
.2

1
0
8
.8

1
4
9
.1
+

1
3
3
.1

1
3
0
.1
�

1
9
0
.0
+

1
8
8
.1
�

1
8
8
.7

P
re
se
n
t

1
0
6
.8
2

1
3
1
.8
3

1
4
5
.0
4

1
2
8
.4
5

1
6
7
.9
3

1
9
6
.5
9

S
in
h
a
(1
9
8
7
)

1
6

S
S
1
-F

1
2
8
.1
#

1
0
8
.8

1
0
6
.3

1
4
7
.8
+

1
2
8
.7

1
2
6
.1
�

1
8
8
.6
#

1
7
8
.9
�

1
7
8
.5

P
re
se
n
t

1
1
1
.5
1

1
2
5
.2
5

1
3
1
.1
7

1
5
9
.4
9

1
7
0
.2
5

1
7
8
.2
2

S
in
h
a
(1
9
8
7
)

S
S
3
-F

1
1
9
.8
#

1
0
5
.4

1
0
2
.6

1
4
1
.4
+

1
1
5
.7

1
1
2
.8
�

1
3
9
.5
�

1
4
1
.2

P
re
se
n
t

C.-F. Liu et al. / International Journal of Solids and Structures 37 (2000) 5813±5827 5821



insigni®cant.
5. The nondimensional fundamental frequencies �o1's of a rotating disk with SS3-F, a type of boundary

condition which is not possible to be represented by plate-theory-based approaches, are quite di�erent
from those of SS1-F. When �O is smaller, �o1's of SS3-F are higher than those of SS1-F and lower
than those of C-F, but they become the lowest among the three boundary conditions when �O
becomes larger. This may attribute to the unsymmetric constraint of the SS3-F and the induced
nonuniform sti�ening across the thickness due to rotation, i.e., with one half part of the thickness
being sti�er than the other half might make the ¯exural rigidity of the plate lower than a uniformly
sti�ened one.

6. The nondimensional fundamental frequencies �o1's increase with the increase of b/a for all cases.
However, smaller b/a makes smaller di�erence in �o1 for di�erent boundary conditions than would
large b/a at �O � 0, 2 or 4. This is reasonable because, when b/a becomes smaller or the annular plate
is approaching a whole plate, inside boundary conditions will make little di�erence. However for
large �O, the centrifugal e�ect, instead of b/a, will dominate as stated in 4 and 5.

Some typical results are shown graphically in Figs. 3 and 4 which compare the trends of �o1 between the
present approach and Sinha (1987). The centrifugal e�ect is shown in Fig. 5. Di�erences of C-F, SS1-F
and SS3-F are shown in Figs. 6 and 7 demonstrates the signi®cance of change of b/a.

It is also noteworthy that, during the investigation, some circumferentially vibrating modes were
revealed. These modes have not been seen in the conventional analyses of rotating plates, at least to the
authors' knowledge. From the results shown, it seems that higher �O and/or lower b/a and a/h may
trigger the circumferential vibrating modes, and surprisingly, they are the lowest modes in some cases.

The frequencies �o2 of the second axisymmetric transverse vibrating mode are also shown in Table 3
together with some results appearing in Sinha (1987). In Table 3, the `�' means the same thing as in

Fig. 3. Comparsion of the trend of �o1 with changing a/h between the present method and that of Sinha (1987) for �O � 4 and

simply supported boundary condition.
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Table 2, while the `+' and `#' symbols after a nondimensional frequency denote that there exists a
straining mode (Liu and Lee, 1997) or both a straining mode and a circumferentially vibrating mode
before the present one. The sti�ening e�ect of �o2 due to the variations of thickness and rotational speed
is of the same, though weaker, trend as �o1, so the explanation we made for �o1 can be applied as well to

Fig. 4. Comparsion of the trend of �o1 with changing a/h between the present method and that of Sinha (1987) for C-F and

b=a � 0:25:

Fig. 5. Typical e�ect of centrifugal force on �o1:
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�o2: However, it is interesting to note that better matching of �o2 between C-F and SS1-F exists for most
of the cases. This is true for both the 3D and 2D analyses. Since �o1 and �o2 have the same trend, the
better matching of the second frequencies could be attributed to the weaker e�ect of boundary
di�erence on �o2 than on �o1:

Fig. 6. Typical e�ect of boundary conditions on �o1 with changing �O and b=a � 0:5:

Fig. 7. Typical e�ect of b/a on �o1:
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It should be mentioned here that due to the high rotating speeds of the plate with a=h � 5, the terms
in the sti�ness matrix that include O may make the sti�ness matrix non-positive de®nite (Meirovitch,
1980). The frequencies for a=h � 5 at �O � 8, 12 and 16 are thus not shown, so are those for b=a � 0:5
with SS1-F � �o1 only) and SS3-F at �O � 16: Also, it should be noted that the induced stresses of some
cases in Tables 2 and 3 may already be higher than the ultimate strength of the material for higher
rotational speeds of the plate.

To further justify the accuracy of the present method, natural frequencies of some typical circular and
annular nonrotating plates with completely free boundary condition by the present method are also
compared to those by an accurate 3D Ritz method (So and Leissa, 1998) in Table 4. The natural
frequencies are found to agree very well between these two methods with corresponding modes having
the same mode shapes. The validation of the present method can thus be reassured. Also, it should be
emphasized that some of the vibration modes, shown in both the present results and those of So and
Leissa (1998), are only possible with 3D analysis.

4. Conclusions

In the present study, a modi®ed axisymmetric ®nite element, based on 3D elasticity, is employed in
the axisymmetric vibration analyses of rotating annular plates. The approach can take into account the
centrifugal e�ect by considering all of the four nonzero rotation-induced stresses instead of only two in
the conventional analyses, can include in the kinetic energy all the velocity components in the three
coordinate directions instead of only one as usually shown in the literature, and can impose on another
type of simply supported condition which just cannot be done by plate-theory-based approaches.
Moreover, it enables us to conduct a 3D analysis with a two-dimensional ®nite element.

Results of some example problems by the present method are shown in tables and ®gures, and are
compared with those by a typical conventional approach. The most remarkable di�erence between the

Table 4

Comparisons of the ®rst ten vibration frequencies in oa
���������
r=G
p

for a circular plate and two annular plates by the present method

(all with 10� 4 mesh) and by the 3D Ritz method (Tables 8, 9, 14, and 15 in So and Leissa, 1998) with n � 0:3a

Annular plate a=h � 2:5

Circular plate a=h � 2:5 b=a � 0:1 b=a � 0:5

Present So and Leissa Present So and Leissa Present So and Leissa

1.464 1.464 (1A0a) 1.433 1.433 (1A0a) 1.388 1.388 (1A0a)

3.436 3.436 (1S0a) 3.319 3.319 (1S0a) 2.233 2.234 (1S0a)

4.417 4.415 (2A0a) 4.493 4.491 (2A0a) 6.814 6.814 (1S0t)

5.136 5.136 (1S0t) 5.142 5.142 (1S0t) 7.856 7.854 (1A0t)

7.360 7.353 (3A0a) 7.439 7.432 (3A0a) 8.324 8.321 (2A0a)

7.856 7.854 (1A0t) 7.856 7.854 (1A0t) 9.133 9.127 (3A0a)

8.419 8.417 (2S0t) 8.163 8.161 (2S0a) 9.958 9.957 (2S0a)

8.589 8.589 (2S0a) 8.459 8.457 (2S0t) 10.40 10.398 (2A0t)

9.335 9.323 (4A0a) 9.389 9.388 (2A0t) 11.37 11.343 (3S0a)

9.386 9.384 (2A0t) 9.632 9.620 (4A0a) 12.22 12.207 (4S0a)

a The number in the parentheses represents the mode number. `A' means antisymmetric mode and `S' symmetric mode (with

respect to the midplane of the plate). 0a represents axisymmetric mode and 0t torsional mode. See So and Leissa (1998) for more

details.
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present method and the conventional one is that thickness e�ect of rotating plates is usually more
signi®cant in the present 3D analysis than in Sinha's. This e�ect becomes more obvious for larger
rotational speeds. Also, cases with SS3-F can be analyzed with the present method and the results are
quite di�erent from those with the conventional simply supported boundary condition. However, for
thin plate, both the present and the conventional approaches will get very close results even for high
rotational speeds.

For circumferentially vibrating modes, a more thorough study will be needed to know the conditions
for their appearance, their interaction or relation with the transverse vibrating modes, etc. and their
investigation will be conducted in another research project.
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1

r2
NiNj � t�rz

ÿ
Ni, zNj, r �Ni, rNj, z

��
dv

g22
ij �

�
v

�
s�rNi, rNj, r � s�zNi, zNj, z � s�y

1

r2
NiNj � trz

ÿ
Ni, zNj, r �Ni, rNj, z

��
dv

g33ij �
�
v

�
s�rNi, rNj, r � s�zNi, zNj, z � t�rz

ÿ
Ni, zNj, r �Ni, rNj, z

��
dv

g12ij � g21
ji � g13ij � g31ji � g23

ij � g32ji � 0

c11ij � c22ij � c23ij � c32ji � c33ij � c13ij � c31ji � 0
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c12ij �
�
v

ÿÿ 2rONiNj

�
dv

c21ji �
�
v

ÿ
2rONiNj

�
dv

m11
ij � m22

ij � m33
ij �

�
v

ÿ
rNiNj

�
dv

m12
ij � m21

ji � m13
ij � m31

ji � m 23
ij � m32

ji � 0

f r
i �

�
v

rO2rNi dv

f y
i � f z

i � 0
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