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Abstract

The axisymmetric vibration of spinning isotropic annular plates is herein analyzed by a modified axisymmetric
finite element. Due to the three-dimensional-elasticity nature of the present approach, all the initial stresses induced
by the centrifugal force are calculated and taken into account in the augmented strain energy expression, while only
two are considered in the conventional analyses. Also, the whole three velocity components are considered in the
inertial term instead of only one by conventional approaches. Natural frequencies of annular plates with different
ratios of inner-to-outer radius, ratios of thickness-to-radius, rotational speeds, and boundary conditions are derived
by the present approach and are compared with those by a plate-theory approach. © 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

The vibration of rotating annular disks has been studied by a number of investigators, for e.g.,
Barasch and Chen (1972), Eversman and Dodson (1969), Kirkhope and Wilson (1976), Lee and Ng
(1995), Nigh and Olson (1981), Rajguru and Sundararajan (1982), Sinha (1987) and Wilson and
Kirkhope (1976). More information can also be found in Leissa (1977, 1981, 1987). All of these
researches are based on plate theories, either classical plate theory or the Mindlin plate theory, and the
rotating effect is taken into account through only the in-plane stresses ¢, and oy induced by the rotation
of the annular plate. Also, only the inertial term of transverse motion of plates is considered. Because of
the two-dimensional-elasticity nature of plate theories, the behaviors through the thickness of the plates
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are not easy to reveal and some boundary conditions are just impossible to specify or to impose. To
circumvent the disadvantages of the plate theories, Liu and Chen (1995) employed an axisymmetric
finite element to analyze the axisymmetric vibration of circular and annular plates, wherein the accuracy
and validation of the approach are justified and some results not otherwise available in the literature are
shown.

In the present study, the approach by Liu and Chen (1995) is extended to include the rotational
effects. Due to the three-dimensional-elasticity nature of the method, all rotation-induced stresses are
calculated first and are considered later in the vibration analyses (compared to only two stresses, ¢, and
oy, in the conventional analyses) and all velocity components in the r, 0, z directions are included in the
kinetic energy term, instead of only the conventional dw/d¢ in the transverse direction. Vibrations of
rotating annular plates with different ratios of inner-to-outer radius, ratios of thickness-to-radius,
rotating speeds and boundary conditions are analyzed, and the results are compared to those obtained
by a plate-theory-based approach.

2. Formulation

To analyze the axisymmetric vibration of rotating annular plates, a modified axisymmetric finite
element is employed with the displacement field as

u=u,z1)
v=w(r,z,1)

w=w(r, z, t) (1)

which is different from the conventional axisymmetric finite element in the appearing of v, the
displacement in the circumferential direction. From this, the axisymmetric circumferentially vibrating
modes can be obtained and will be shown later to be uncoupled from the motion of u and w.
Displacements u and w are in the radial and the axial directions with r and z denoting the coordinates in
those respective directions. ¢ is the time variable. Since we are concerned with the axisymmetric
vibration, all the three displacements are independent of the circumferential coordinate 6.

Strains can be derived from the displacements as follows:

ou aw u av v
8,4:— 8227 Ep = — Vg —= — — —
or 3z U7y /ro oar r
av du dw
1 = — V., = — e 2
Vz0 9z Vrz 9z + ar ( )
and the stress—strain relations are those for isotropic material,
o, Chi Cpp Ci3 0 0 0 &
(& sz C23 0 0 0 &
o C 0 0 0 €
T2 Cag 0 0 720
T, symmetry Css 0 )
Trz Ces Yz



C.-F. Liu et al. | International Journal of Solids and Structures 37 (2000) 5813-5827 5815

with
E(1—v)
Ci=Cp=Cp=— "V _
1 2 B v -
Ev
Ch=Ci3=Cn=

(1+wv)(1—2v)

Cy=Cs5=Ce6=0G
where E is Young’s modulus, v is Poisson’s ratio and G is the shear modulus. The strain energy is

1
U= 5 J [O-r'gr + 0:6; + dpp + T207-0 + 10710 + T”Zyrz] dy (4)
v

and the kinetic energy of the plate is written as

T= % JV p[(z’t — Qv)2-|-((r +u)2 + \3)2+W2] dv ®)

where all the velocity components are measured with respect to an inertial frame, see Sreenivasamurthy
and Ramamurti (1981), and Q (rad/s) is the angular velocity of the plates. In conventional analyses,

only the third term in the bracket is considered.
Following the general procedure of the finite element method, we express the displacements as

U= iui(t)N,-(r, )
=1

V= Xn:vi(t)Ni(l', )
i=1

w= zn:w,-(t)N i1, 2) (6)
i=1

Where u;, v;, w; are nodal values and N; are shape functions, and »n denotes the number of nodes in an
element. We then substitute Eq. (6) into Egs. (2)—(5) to express the strain energy and kinetic energy in
terms of the nodal displacements and shape functions. After that, Hamilton’s principle is applied to an
element

5<J(T—U)dt):0 (7

and we end up with the following matrix equation
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In Eq. 8), [[m;*N, [ef*N, [k;*1l, for i,j=1~n, are the elemental mass, gyroscopic and stiffness
matrices, respectively. {u;}, {v;}, {w;}, j = 1 ~n, are vectors of nodal displacements and {f/}, {ff-)}, {ri}
i=1,...,n, are forcing vectors. For details of these matrices and vectors, see Appendix A. However, it
is noteworthy that, from the expression of {f 7}, we may find that it is the centrifugal force of the

rotating disk and our formulation automatically makes this term appear.

Eq. (8) for all the elements can be assembled to obtain the system equation for the annular plate.

U} + [c{ U} + (KUY = {F) )

Now we can turn to the first step of our approach: to calculate the internal stresses due to rotation by
solving the simultaneous equations (10) below, which is obtained from Eq. (9) by dropping the time-
dependent terms.

[KNU} = {F} (10)

After the rotation-induced stresses {¢*} are calculated from the solution of Eq. (10), integration of their
multiplication with the nonlinear strains represents the part of contribution these stresses can make to
the strain energy to affect the vibration of rotating annular plates.

V:J {6*}Tx{eN}dv (11)

where {0*}" =[0? o7 ¢} 1] and the nonlinear strains are

1
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(12)

It should be noted that ¥, and ¥, are zero due to symmetry and the corresponding nonlinear strains are
not shown in Eq. (12). The modified Hamiton’s Principle then states:

5J(T—U—V)dt:0

and we derive the modified elemental equation with the stiffness matrix being augmented as
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[kll] [klZ] [k13] [gll] [g12] [gl3]
k] k21 |+ | [¢2] 2] [2%] (13)
[k31] [k32] [k33] [g31] [g32] [g33]

and the remaining terms in Eq. (8) remain the same. The additional matrix [[g??]] comes from Eq. (11)
and are usually called the geometric stiffness matrix in the literature. Its detailed formulae can be found
also in Appendix A.

Now we have the system equation in the following form.

MU} + [ U} + K] + [GIN U} = {F) (14)

To investigate the free vibration of spinning annular plates, synchronous harmonic motion is assumed
and the gyroscopic matrix and the forcing term are neglected as is usually done (Leissa and Co, 1984),
and we obtain the system eigenvalue equation as follows

[[K] + [GINU} = o’ [MHU} (15)

with w? as the eigenvalue and o is the natural frequency of axisymmetric vibration of the rotating

annular plate. Also, a careful examination of the entries in the matrices of Eq. (15) shows that the
motions in the radial and the thickness directions are uncoupled from those in the circumferential
direction, and can be solved separately.

3. Results and discussions

To show the validation and accuracy of the present approach, some example problems with different
ratios of inner-to-outer radius, ratios of radius-to-thickness, rotational speeds and boundary conditions
are analyzed to calculate their natural frequencies. The material of the plate is steel with £ = 210 GPa,
v=0.3 and p = 7810 kg/m>. The geometry of the annular plate is of a/h = 5, 10, 20, 50 and b/a = 0.1,
0.25, 0.5 where & is the plate thickness and is assumed to be a constant throughout the investigation; «
is the outer radius and b is the inner radius of the annular plate.

Three types of boundary conditions are employed in the present study: clamped-free (C-F), simply
supported I-free (SS1-F), and simply supported 3-free (SS3-F), see Fig. 1. These represent the most
typical and practical boundary conditions of rotating disk in real situations. The two different simply
supported boundary conditions have been studied by Liu and Chen (1995) and the abbreviations, SS1
and SS3, are thus followed. It is noted that SS3 is a condition that cannot be imposed with plate-theory-
based approaches.

All the analyses are accomplished with a eight-node, two-dimensional quadratic isoparametric
quadrilateral axisymmetric element, see Reddy (1993). Typical trends of convergence and meshes used in
the present study are shown in Table 1. The numbers in the parentheses represent the numbers of grids
of the finite element meshes in the radial and the thickness directions, respectively. Both are equally
spaced. The finest mesh of each case in Table 1 is then employed to obtain frequencies in Tables 2 and
3. The rotational speed of the plate Q and the natural frequency w are nondimensionalized according to
Q = Qa*(ph/8D)"? and & = wa*(ph/D)"?, which are just the same as those in Sinha (1987) using a
plate-theory-based approach with Mindlin’s transverse shear deformation and rotary inertia terms
considered.

Table 2 shows the nondimensional natural frequencies @;’s of the first axisymmetric transverse
vibration mode of rotating annular plates under different combinations of a/h, b/a, boundary conditions
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Fig. 1. Boundary conditions.

and Q. The ‘«’ symbol after a nondimensional frequency mean that there exists a circumferentially
vibrating mode (in-plane torsional mode) before the present one. The shape of one such mode is shown
in Fig. 2. From Table 2, the following conclusions may be drawn.

1. It is seen that w;’s get smaller with decreasing a/h for all the nonrotational cases with both the
present method and Sinha’s. As Q gets larger, the increase of w; with decreasing a/h is more obvious
for the present method than for Sinha for all the cases compared. With plate theories, centrifugal
force due to rotation can cause only extension in the radial and the circumferential directions no
matter what a/h is, when the initial stiffening is concerned. However, some other effect, such as
Poisson’s effect in r—z plane in the present 3D analysis, may make the rotating plate stiffer when the
thickness is larger. In other words, the thickness effect for plate rotation is more significant in 3D
analysis than in plate-theory analysis of plate vibrations. This might also be the reason that @;’s of
Sinha’s for smaller a/h are still smaller than for large a/h even when Q2 is eight and above and, the

Fig. 2. An axisymmetric_circumferentially vibrating mode (in-plane torsional mode), @ = 6.568, for C-F boundary condition,
b/a=0.1,a/h =10, and Q =4 (u = w = 0.0).
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boundary condition is of the clamped-free type.

. Compared to the clamped-free cases, @;’s for the simply-supported boundary condition by Sinha are
quite close to each other for various values of a/h, especially when Q = 0. This could be attributed to
the zero rotational boundary constraint that reduces the effect of thickness variation. Thus, @; by
Sinha for small a/h easily goes beyond that for larger a/h with increasing €, even though the
thickness effect of the rotating plate in Sinha’s analysis is not as high as in the 3D analysis.

. For thin plates (a/h = 50), results of the present approach and those of Sinha’s are very close when
boundary conditions are C-F and SSI-F with arbitrary b/a and Q. In these thin plate cases, Sinha
switches his shear deformation theory to classical plate theory. Therefore, it is justified again that
classical plate theory is a good alternative in analyzing the behaviors of thin plates in some cases,
e.g., when the boundary conditions are the conventional C-F and SS1-F types.

. In all cases, @,’s increase as Q increases. However, when Q is getting larger, the results for the C-F
boundary condition and the SSI1-F boundary condition become close to each other. For example,
ratio of @;’s between C-F and SS1-F is 13.03/4.12 for b/a = 0.5, a/h = 50 at @ = 0 and is 67.03/63.57
at Q = 16. Therefore, we may say that the centrifugal effect dominates the vibration of the rotating

disk at higher @ and makes the difference between the C-F and the SSI1-F boundary conditions

Table 1

Typical convergence of @; with meshes used in the present study (2 = 4)

Mode 1
b/a=0.1 b/a=0.25 b/a=10.5
Boundary conditions a/h 5 10 5 10 5 10
C-F (10x2) 9.637° (10x2) 9.771" (10x2) 12.74* (10x2) 12.81 (10x2) 2029 (10x2) 20.98
(20 x2) 9.623" (20x2) 9.748" (20x2) 12.73* (20x2) 12.79 (10x4) 20.26 (20x2) 20.95
(20 x4) 9.611* (20 x4) 9.738" (20x4) 12.71" (20x4) 12.78 (20x4) 20.25 (20 x4) 20.93
SS1-F (10x2) 8.389" (10x2) 8.561" (10x2) 10.78" (10x2) 10.82 (10x2) 15.76 (10x2) 16.02
(20 x2) 8310 (20 x2) 8.516" (20x2) 10.71" (20x2) 10.76 (10x4) 1564 (20x2) 15.97
(20 x 4) 8.277° (20 x4) 8.476" (20x4) 10.59" (20x4) 10.69 (20x4) 1556 (20x4) 15.87
SS3-F (10x2) 7.779* (10 x2) 8.806" (10x2)  9.891" (10x2) 10.30 (10x2) 13.11 (10x2) 13.33
(20 x2) 7.594" (20x2) 8.729* (20x2)  9.779* (20x2) 10.24 (10x4) 13.02 (20x2) 13.29
(20 x 4) 7.434% (20 x4) 8.664" (20 x4)  9.656" (20 x4) 10.18 (20x4) 1295 (20x4) 13.22
Mode 1
b/a=0.1 b/a=0.25 b/a=0.5
Boundary conditions a/h 20 50 20 50 20 50
C-F (I5x1) 9874 (30x1) 9.873 (15x1) 1288 (25x1) 12.88 (20x1) 21.24 (20x1) 21.31
(I5x2) 9.847 (60x1) 9858 (15x2) 12.86 (50x1) 12.86 (20x2) 21.20 (40x1) 21.27
B0x2) 9.830 (B0x2) 12.84 (50x2) 12.85 (40x2) 21.26
SS1-F (I5x1) 8764 (0x1) 8777 (15x1) 11.11 (25x1) 11.13 (20x1) 1638 (20x 1) 16.45
(15x2) 8.654 (60x1) 8765 (15x2) 1095 (50x1) 11.12 (20x2) 1622 (40x1) 16.43
(30x2) 8.624 (30x2) 1092 (50x2) 11.05 (40x2) 16.37
SS3-F (I5x 1) 9.009* (30x1) 9.043 (15x1) 1041 (25x1) 1044 (0x1) 1347 (20x1) 13.53
(I5x2) 8.965% (60x1) 9.023 (15x2) 10.37 (50x1) 1042 (20x2) 1341 ((40x1) 13.51
(30 x2) 8.921* (30x2) 1032 (50x2) 10.39 (40 x 2) 13.49
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insignificant.

5. The nondimensional fundamental frequencies @;’s of a rotating disk with SS3-F, a type of boundary
condition which is not possible to be represented by plate-theory-based approaches, are quite different
from those of SS1-F. When Q is smaller, &;’s of SS3-F are higher than those of SS1-F and lower
than those of C-F, but they become the lowest among the three boundary conditions when Q
becomes larger. This may attribute to the unsymmetric constraint of the SS3-F and the induced
nonuniform stiffening across the thickness due to rotation, i.e., with one half part of the thickness
being stiffer than the other half might make the flexural rigidity of the plate lower than a uniformly
stiffened one.

6. The nondimensional fundamental frequencies w;’s increase with the increase of b/a for all cases.
However, smaller h/a makes smaller difference in @; for different boundary conditions than would
large b/a at Q =0, 2 or 4. This is reasonable because, when b/a becomes smaller or the annular plate
is approaching a whole plate, inside boundary conditions will make little difference. However for
large Q, the centrifugal effect, instead of b/a, will dominate as stated in 4 and 5.

Some typical results are shown graphically in Figs. 3 and 4 which compare the trends of @; between the
present approach and Sinha (1987). The centrifugal effect is shown in Fig. 5. Differences of C-F, SS1-F
and SS3-F are shown in Figs. 6 and 7 demonstrates the significance of change of b/a.

It is also noteworthy that, during the investigation, some circumferentially vibrating modes were
revealed. These modes have not been seen in the conventional analyses of rotating plates, at least to the
authors’ knowledge. From the results shown, it seems that higher Q and/or lower b/a and a/h may
trigger the circumferential vibrating modes, and surprisingly, they are the lowest modes in some cases.

The frequencies @, of the second axisymmetric transverse vibrating mode are also shown in Table 3
together with some results appearing in Sinha (1987). In Table 3, the ‘*’ means the same thing as in
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Fig. 3. Comparsion of the trend of @; with changing a/h between the present method and that of Sinha (1987) for Q =4 and
simply supported boundary condition.
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Fig. 4. Comparsion of the trend of @; with changing a/h between the present method and that of Sinha (1987) for C-F and

b/a=0.25.

Table 2, while the ‘+’ and ‘# symbols after a nondimensional frequency denote that there exists a
straining mode (Liu and Lee, 1997) or both a straining mode and a circumferentially vibrating mode
before the present one. The stiffening effect of @, due to the variations of thickness and rotational speed
is of the same, though weaker, trend as @;, so the explanation we made for @w; can be applied as well to
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Fig. 5. Typical effect of centrifugal force on @;.
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Fig. 6. Typical effect of boundary conditions on é@; with changing Q and b/a = 0.5.

;. However, it is interesting to note that better matching of @, between C-F and SS1-F exists for most
of the cases. This is true for both the 3D and 2D analyses. Since @w; and @, have the same trend, the
better matching of the second frequencies could be attributed to the weaker effect of boundary
difference on @, than on @;.
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Fig. 7. Typical effect of b/a on ®;.



C.-F. Liu et al. | International Journal of Solids and Structures 37 (2000) 5813-5827 5825

Table 4
Comparisons of the first ten vibration frequencies in wa+/p/G for a circular plate and two annular plates by the present method
(all with 10 x 4 mesh) and by the 3D Ritz method (Tables 8, 9, 14, and 15 in So and Leissa, 1998) with v = 0.3*

Annular plate a/h = 2.5

Circular plate a/h = 2.5 b/a=0.1 b/a=0.5

Present So and Leissa Present So and Leissa Present So and Leissa
1.464 1.464 (1A0%) 1.433 1.433 (1A09) 1.388 1.388 (1A0%)
3.436 3.436 (1S0) 3.319 3.319 (1S09) 2.233 2.234 (1S0%)
4.417 4.415 (2A09) 4.493 4.491 (2A09) 6.814 6.814 (1S07)
5.136 5.136 (1S07) 5.142 5.142 (1S0%) 7.856 7.854 (1A0")
7.360 7.353 (3A0%) 7.439 7.432 (3A0%) 8.324 8.321 (2A0%)
7.856 7.854 (1A0") 7.856 7.854 (1A0") 9.133 9.127 (3A0%)
8.419 8.417 (2S0%) 8.163 8.161 (2S0) 9.958 9.957 (2S0%)
8.589 8.589 (2S0) 8.459 8.457 (2S0") 10.40 10.398 (2A0")
9.335 9.323 (4A0%) 9.389 9.388 (2A0) 11.37 11.343 (350%)
9.386 9.384 (2A0") 9.632 9.620 (4A07) 12.22 12.207 (4S0%)

% The number in the parentheses represents the mode number. ‘A’ means antisymmetric mode and ‘S’ symmetric mode (with
respect to the midplane of the plate). 0 represents axisymmetric mode and 0’ torsional mode. See So and Leissa (1998) for more
details.

It should be mentioned here that due to the high rotating speeds of the plate with a/h = 5, the terms
in the stiffness matrix that include 2 may make the stiffness matrix non-positive definite (Meirovitch,
1980). The frequencies for a/h =35 at Q =38, 12 and 16 are thus not shown, so are those for b/a = 0.5
with SS1-F (w; only) and SS3-F at Q = 16. Also, it should be noted that the induced stresses of some
cases in Tables 2 and 3 may already be higher than the ultimate strength of the material for higher
rotational speeds of the plate.

To further justify the accuracy of the present method, natural frequencies of some typical circular and
annular nonrotating plates with completely free boundary condition by the present method are also
compared to those by an accurate 3D Ritz method (So and Leissa, 1998) in Table 4. The natural
frequencies are found to agree very well between these two methods with corresponding modes having
the same mode shapes. The validation of the present method can thus be reassured. Also, it should be
emphasized that some of the vibration modes, shown in both the present results and those of So and
Leissa (1998), are only possible with 3D analysis.

4. Conclusions

In the present study, a modified axisymmetric finite element, based on 3D elasticity, is employed in
the axisymmetric vibration analyses of rotating annular plates. The approach can take into account the
centrifugal effect by considering all of the four nonzero rotation-induced stresses instead of only two in
the conventional analyses, can include in the kinetic energy all the velocity components in the three
coordinate directions instead of only one as usually shown in the literature, and can impose on another
type of simply supported condition which just cannot be done by plate-theory-based approaches.
Moreover, it enables us to conduct a 3D analysis with a two-dimensional finite element.

Results of some example problems by the present method are shown in tables and figures, and are
compared with those by a typical conventional approach. The most remarkable difference between the
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present method and the conventional one is that thickness effect of rotating plates is usually more
significant in the present 3D analysis than in Sinha’s. This effect becomes more obvious for larger
rotational speeds. Also, cases with SS3-F can be analyzed with the present method and the results are
quite different from those with the conventional simply supported boundary condition. However, for
thin plate, both the present and the conventional approaches will get very close results even for high
rotational speeds.

For circumferentially vibrating modes, a more thorough study will be needed to know the conditions
for their appearance, their interaction or relation with the transverse vibrating modes, etc. and their
investigation will be conducted in another research project.

Appendix A

1 1 1
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J

(2 = J (—2pQ2N;N;) dv

c2! J (20QN;N;) dv

i
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Myt = = =y = my =g =0

fi= J pQ2rN; dv
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